Evaluate
\frac{a^{4}}{A^{5}}
Differentiate w.r.t. a
\frac{4a^{3}}{A^{5}}
Share
Copied to clipboard
\frac{\left(\frac{1}{a}\right)^{-4}B^{6}A^{-2}}{B^{6}A^{3}}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
\frac{\frac{1^{-4}}{a^{-4}}B^{6}A^{-2}}{B^{6}A^{3}}
To raise \frac{1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1^{-4}B^{6}}{a^{-4}}A^{-2}}{B^{6}A^{3}}
Express \frac{1^{-4}}{a^{-4}}B^{6} as a single fraction.
\frac{\frac{1^{-4}B^{6}A^{-2}}{a^{-4}}}{B^{6}A^{3}}
Express \frac{1^{-4}B^{6}}{a^{-4}}A^{-2} as a single fraction.
\frac{1^{-4}B^{6}A^{-2}}{a^{-4}B^{6}A^{3}}
Express \frac{\frac{1^{-4}B^{6}A^{-2}}{a^{-4}}}{B^{6}A^{3}} as a single fraction.
\frac{1^{-4}A^{-2}}{a^{-4}A^{3}}
Cancel out B^{6} in both numerator and denominator.
\frac{1^{-4}}{a^{-4}A^{5}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{a^{-4}A^{5}}
Calculate 1 to the power of -4 and get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}