Evaluate
-\frac{1}{5}=-0.2
Factor
-\frac{1}{5} = -0.2
Share
Copied to clipboard
\frac{-\frac{1}{8}-4-2^{5}\left(\left(1+\frac{1}{3}\right)^{-4}\left(1-\frac{1}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Subtract \frac{1}{4} from \frac{1}{8} to get -\frac{1}{8}.
\frac{-\frac{33}{8}-2^{5}\left(\left(1+\frac{1}{3}\right)^{-4}\left(1-\frac{1}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Subtract 4 from -\frac{1}{8} to get -\frac{33}{8}.
\frac{-\frac{33}{8}-32\left(\left(1+\frac{1}{3}\right)^{-4}\left(1-\frac{1}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate 2 to the power of 5 and get 32.
\frac{-\frac{33}{8}-32\left(\left(\frac{4}{3}\right)^{-4}\left(1-\frac{1}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Add 1 and \frac{1}{3} to get \frac{4}{3}.
\frac{-\frac{33}{8}-32\left(\frac{81}{256}\left(1-\frac{1}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate \frac{4}{3} to the power of -4 and get \frac{81}{256}.
\frac{-\frac{33}{8}-32\left(\frac{81}{256}\times \left(\frac{3}{4}\right)^{-4}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
\frac{-\frac{33}{8}-32\left(\frac{81}{256}\times \frac{256}{81}+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate \frac{3}{4} to the power of -4 and get \frac{256}{81}.
\frac{-\frac{33}{8}-32\left(1+\frac{2}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Multiply \frac{81}{256} and \frac{256}{81} to get 1.
\frac{-\frac{33}{8}-32\times \left(\frac{5}{3}\right)^{-3}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Add 1 and \frac{2}{3} to get \frac{5}{3}.
\frac{-\frac{33}{8}-32\times \frac{27}{125}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate \frac{5}{3} to the power of -3 and get \frac{27}{125}.
\frac{-\frac{33}{8}-\frac{864}{125}\left(-\frac{10}{3}\right)^{3}\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Multiply 32 and \frac{27}{125} to get \frac{864}{125}.
\frac{-\frac{33}{8}-\frac{864}{125}\left(-\frac{1000}{27}\right)\times \frac{1}{64}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate -\frac{10}{3} to the power of 3 and get -\frac{1000}{27}.
\frac{-\frac{33}{8}-\left(-256\times \frac{1}{64}\right)}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Multiply \frac{864}{125} and -\frac{1000}{27} to get -256.
\frac{-\frac{33}{8}-\left(-4\right)}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Multiply -256 and \frac{1}{64} to get -4.
\frac{-\frac{33}{8}+4}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
The opposite of -4 is 4.
\frac{-\frac{1}{8}}{\left(-\left(5+\left(-\frac{1}{2}\right)^{-4}\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Add -\frac{33}{8} and 4 to get -\frac{1}{8}.
\frac{-\frac{1}{8}}{\left(-\left(5+16\right)\right)\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Calculate -\frac{1}{2} to the power of -4 and get 16.
\frac{-\frac{1}{8}}{-21\left(-\frac{1}{3}\right)+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Add 5 and 16 to get 21.
\frac{-\frac{1}{8}}{7+\frac{12}{5}\left(1+\frac{1}{4}\right)-\frac{75}{8}}
Multiply -21 and -\frac{1}{3} to get 7.
\frac{-\frac{1}{8}}{7+\frac{12}{5}\times \frac{5}{4}-\frac{75}{8}}
Add 1 and \frac{1}{4} to get \frac{5}{4}.
\frac{-\frac{1}{8}}{7+3-\frac{75}{8}}
Multiply \frac{12}{5} and \frac{5}{4} to get 3.
\frac{-\frac{1}{8}}{10-\frac{75}{8}}
Add 7 and 3 to get 10.
\frac{-\frac{1}{8}}{\frac{5}{8}}
Subtract \frac{75}{8} from 10 to get \frac{5}{8}.
-\frac{1}{8}\times \frac{8}{5}
Divide -\frac{1}{8} by \frac{5}{8} by multiplying -\frac{1}{8} by the reciprocal of \frac{5}{8}.
-\frac{1}{5}
Multiply -\frac{1}{8} and \frac{8}{5} to get -\frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}