Evaluate
\frac{29}{105}\approx 0.276190476
Factor
\frac{29}{3 \cdot 5 \cdot 7} = 0.2761904761904762
Share
Copied to clipboard
\frac{\frac{4}{20}+\frac{5}{20}-\left(-\frac{1}{30}\right)}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Least common multiple of 5 and 4 is 20. Convert \frac{1}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{\frac{4+5}{20}-\left(-\frac{1}{30}\right)}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Since \frac{4}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{20}-\left(-\frac{1}{30}\right)}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Add 4 and 5 to get 9.
\frac{\frac{9}{20}+\frac{1}{30}}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
The opposite of -\frac{1}{30} is \frac{1}{30}.
\frac{\frac{27}{60}+\frac{2}{60}}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Least common multiple of 20 and 30 is 60. Convert \frac{9}{20} and \frac{1}{30} to fractions with denominator 60.
\frac{\frac{27+2}{60}}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Since \frac{27}{60} and \frac{2}{60} have the same denominator, add them by adding their numerators.
\frac{\frac{29}{60}}{\left(-\frac{1\times 5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Add 27 and 2 to get 29.
\frac{\frac{29}{60}}{\left(-\frac{5+2}{5}\right)\left(-\frac{1\times 4+1}{4}\right)}
Multiply 1 and 5 to get 5.
\frac{\frac{29}{60}}{-\frac{7}{5}\left(-\frac{4+1}{4}\right)}
Add 5 and 2 to get 7.
\frac{\frac{29}{60}}{-\frac{7}{5}\left(-\frac{5}{4}\right)}
Add 4 and 1 to get 5.
\frac{\frac{29}{60}}{\frac{-7\left(-5\right)}{5\times 4}}
Multiply -\frac{7}{5} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{29}{60}}{\frac{35}{20}}
Do the multiplications in the fraction \frac{-7\left(-5\right)}{5\times 4}.
\frac{\frac{29}{60}}{\frac{7}{4}}
Reduce the fraction \frac{35}{20} to lowest terms by extracting and canceling out 5.
\frac{29}{60}\times \frac{4}{7}
Divide \frac{29}{60} by \frac{7}{4} by multiplying \frac{29}{60} by the reciprocal of \frac{7}{4}.
\frac{29\times 4}{60\times 7}
Multiply \frac{29}{60} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{116}{420}
Do the multiplications in the fraction \frac{29\times 4}{60\times 7}.
\frac{29}{105}
Reduce the fraction \frac{116}{420} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}