Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\left(\frac{4}{12}+\frac{9}{12}\right)\times 11}{\frac{1}{3}\times \frac{2\times 4+3}{4}\times 13}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{\frac{4+9}{12}\times 11}{\frac{1}{3}\times \frac{2\times 4+3}{4}\times 13}
Since \frac{4}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{13}{12}\times 11}{\frac{1}{3}\times \frac{2\times 4+3}{4}\times 13}
Add 4 and 9 to get 13.
\frac{\frac{13\times 11}{12}}{\frac{1}{3}\times \frac{2\times 4+3}{4}\times 13}
Express \frac{13}{12}\times 11 as a single fraction.
\frac{\frac{143}{12}}{\frac{1}{3}\times \frac{2\times 4+3}{4}\times 13}
Multiply 13 and 11 to get 143.
\frac{\frac{143}{12}}{\frac{1}{3}\times \frac{8+3}{4}\times 13}
Multiply 2 and 4 to get 8.
\frac{\frac{143}{12}}{\frac{1}{3}\times \frac{11}{4}\times 13}
Add 8 and 3 to get 11.
\frac{\frac{143}{12}}{\frac{1\times 11}{3\times 4}\times 13}
Multiply \frac{1}{3} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{143}{12}}{\frac{11}{12}\times 13}
Do the multiplications in the fraction \frac{1\times 11}{3\times 4}.
\frac{\frac{143}{12}}{\frac{11\times 13}{12}}
Express \frac{11}{12}\times 13 as a single fraction.
\frac{\frac{143}{12}}{\frac{143}{12}}
Multiply 11 and 13 to get 143.
1
Divide \frac{143}{12} by \frac{143}{12} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}