Evaluate
\frac{62807013}{499000}\approx 125.865757515
Factor
\frac{1013 \cdot 3 ^ {2} \cdot 83 ^ {2}}{499 \cdot 2 ^ {3} \cdot 5 ^ {3}} = 125\frac{432013}{499000} = 125.86575751503005
Share
Copied to clipboard
\frac{\left(\frac{0.996}{1.996}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Add 1 and 0.996 to get 1.996.
\frac{\left(\frac{996}{1996}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Expand \frac{0.996}{1.996} by multiplying both numerator and the denominator by 1000.
\frac{\left(\frac{249}{499}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Reduce the fraction \frac{996}{1996} to lowest terms by extracting and canceling out 4.
\frac{\frac{62001}{249001}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Calculate \frac{249}{499} to the power of 2 and get \frac{62001}{249001}.
\frac{\frac{62001}{249001}\times \left(\frac{1013}{1000}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Expand \frac{101.3}{100} by multiplying both numerator and the denominator by 10.
\frac{\frac{62001}{249001}\times \frac{1026169}{1000000}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Calculate \frac{1013}{1000} to the power of 2 and get \frac{1026169}{1000000}.
\frac{\frac{63623504169}{249001000000}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Multiply \frac{62001}{249001} and \frac{1026169}{1000000} to get \frac{63623504169}{249001000000}.
\frac{\frac{63623504169}{249001000000}}{\frac{0.004}{1+0.996}\times \frac{101.3}{100}}
Subtract 0.996 from 1 to get 0.004.
\frac{\frac{63623504169}{249001000000}}{\frac{0.004}{1.996}\times \frac{101.3}{100}}
Add 1 and 0.996 to get 1.996.
\frac{\frac{63623504169}{249001000000}}{\frac{4}{1996}\times \frac{101.3}{100}}
Expand \frac{0.004}{1.996} by multiplying both numerator and the denominator by 1000.
\frac{\frac{63623504169}{249001000000}}{\frac{1}{499}\times \frac{101.3}{100}}
Reduce the fraction \frac{4}{1996} to lowest terms by extracting and canceling out 4.
\frac{\frac{63623504169}{249001000000}}{\frac{1}{499}\times \frac{1013}{1000}}
Expand \frac{101.3}{100} by multiplying both numerator and the denominator by 10.
\frac{\frac{63623504169}{249001000000}}{\frac{1013}{499000}}
Multiply \frac{1}{499} and \frac{1013}{1000} to get \frac{1013}{499000}.
\frac{63623504169}{249001000000}\times \frac{499000}{1013}
Divide \frac{63623504169}{249001000000} by \frac{1013}{499000} by multiplying \frac{63623504169}{249001000000} by the reciprocal of \frac{1013}{499000}.
\frac{62807013}{499000}
Multiply \frac{63623504169}{249001000000} and \frac{499000}{1013} to get \frac{62807013}{499000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}