Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{0.996}{1.996}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Add 1 and 0.996 to get 1.996.
\frac{\left(\frac{996}{1996}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Expand \frac{0.996}{1.996} by multiplying both numerator and the denominator by 1000.
\frac{\left(\frac{249}{499}\right)^{2}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Reduce the fraction \frac{996}{1996} to lowest terms by extracting and canceling out 4.
\frac{\frac{62001}{249001}\times \left(\frac{101.3}{100}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Calculate \frac{249}{499} to the power of 2 and get \frac{62001}{249001}.
\frac{\frac{62001}{249001}\times \left(\frac{1013}{1000}\right)^{2}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Expand \frac{101.3}{100} by multiplying both numerator and the denominator by 10.
\frac{\frac{62001}{249001}\times \frac{1026169}{1000000}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Calculate \frac{1013}{1000} to the power of 2 and get \frac{1026169}{1000000}.
\frac{\frac{63623504169}{249001000000}}{\frac{1-0.996}{1+0.996}\times \frac{101.3}{100}}
Multiply \frac{62001}{249001} and \frac{1026169}{1000000} to get \frac{63623504169}{249001000000}.
\frac{\frac{63623504169}{249001000000}}{\frac{0.004}{1+0.996}\times \frac{101.3}{100}}
Subtract 0.996 from 1 to get 0.004.
\frac{\frac{63623504169}{249001000000}}{\frac{0.004}{1.996}\times \frac{101.3}{100}}
Add 1 and 0.996 to get 1.996.
\frac{\frac{63623504169}{249001000000}}{\frac{4}{1996}\times \frac{101.3}{100}}
Expand \frac{0.004}{1.996} by multiplying both numerator and the denominator by 1000.
\frac{\frac{63623504169}{249001000000}}{\frac{1}{499}\times \frac{101.3}{100}}
Reduce the fraction \frac{4}{1996} to lowest terms by extracting and canceling out 4.
\frac{\frac{63623504169}{249001000000}}{\frac{1}{499}\times \frac{1013}{1000}}
Expand \frac{101.3}{100} by multiplying both numerator and the denominator by 10.
\frac{\frac{63623504169}{249001000000}}{\frac{1013}{499000}}
Multiply \frac{1}{499} and \frac{1013}{1000} to get \frac{1013}{499000}.
\frac{63623504169}{249001000000}\times \frac{499000}{1013}
Divide \frac{63623504169}{249001000000} by \frac{1013}{499000} by multiplying \frac{63623504169}{249001000000} by the reciprocal of \frac{1013}{499000}.
\frac{62807013}{499000}
Multiply \frac{63623504169}{249001000000} and \frac{499000}{1013} to get \frac{62807013}{499000}.