Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x is x\left(x-5\right). Multiply \frac{x+1}{x-5} times \frac{x}{x}. Multiply \frac{x+6}{x} times \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Since \frac{\left(x+1\right)x}{x\left(x-5\right)} and \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Do the multiplications in \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Combine like terms in x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Multiply \frac{x+1}{x-5} times \frac{x+6}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Since \frac{\left(x-5\right)x}{\left(x-5\right)x} and \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} have the same denominator, add them by adding their numerators.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Do the multiplications in \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Combine like terms in x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Divide \frac{30}{x\left(x-5\right)} by \frac{2x^{2}+2x+6}{\left(x-5\right)x} by multiplying \frac{30}{x\left(x-5\right)} by the reciprocal of \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Cancel out x\left(x-5\right) in both numerator and denominator.
\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x is x\left(x-5\right). Multiply \frac{x+1}{x-5} times \frac{x}{x}. Multiply \frac{x+6}{x} times \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Since \frac{\left(x+1\right)x}{x\left(x-5\right)} and \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Do the multiplications in \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Combine like terms in x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Multiply \frac{x+1}{x-5} times \frac{x+6}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Since \frac{\left(x-5\right)x}{\left(x-5\right)x} and \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} have the same denominator, add them by adding their numerators.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Do the multiplications in \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Combine like terms in x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Divide \frac{30}{x\left(x-5\right)} by \frac{2x^{2}+2x+6}{\left(x-5\right)x} by multiplying \frac{30}{x\left(x-5\right)} by the reciprocal of \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Cancel out x\left(x-5\right) in both numerator and denominator.