Evaluate
\frac{15}{x^{2}+x+3}
Expand
\frac{30}{2x^{2}+2x+6}
Graph
Share
Copied to clipboard
\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x is x\left(x-5\right). Multiply \frac{x+1}{x-5} times \frac{x}{x}. Multiply \frac{x+6}{x} times \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Since \frac{\left(x+1\right)x}{x\left(x-5\right)} and \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Do the multiplications in \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Combine like terms in x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Multiply \frac{x+1}{x-5} times \frac{x+6}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Since \frac{\left(x-5\right)x}{\left(x-5\right)x} and \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} have the same denominator, add them by adding their numerators.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Do the multiplications in \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Combine like terms in x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Divide \frac{30}{x\left(x-5\right)} by \frac{2x^{2}+2x+6}{\left(x-5\right)x} by multiplying \frac{30}{x\left(x-5\right)} by the reciprocal of \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Cancel out x\left(x-5\right) in both numerator and denominator.
\frac{\frac{x+1}{x-5}-\frac{x+6}{x}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{\left(x+1\right)x}{x\left(x-5\right)}-\frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-5 and x is x\left(x-5\right). Multiply \frac{x+1}{x-5} times \frac{x}{x}. Multiply \frac{x+6}{x} times \frac{x-5}{x-5}.
\frac{\frac{\left(x+1\right)x-\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Since \frac{\left(x+1\right)x}{x\left(x-5\right)} and \frac{\left(x+6\right)\left(x-5\right)}{x\left(x-5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x-x^{2}+5x-6x+30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Do the multiplications in \left(x+1\right)x-\left(x+6\right)\left(x-5\right).
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+6-5}{x-5}\times \frac{x+6}{x}}
Combine like terms in x^{2}+x-x^{2}+5x-6x+30.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{x+1}{x-5}\times \frac{x+6}{x}}
Subtract 5 from 6 to get 1.
\frac{\frac{30}{x\left(x-5\right)}}{1+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Multiply \frac{x+1}{x-5} times \frac{x+6}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x}{\left(x-5\right)x}+\frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-5\right)x}{\left(x-5\right)x}.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{\left(x-5\right)x+\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x}}
Since \frac{\left(x-5\right)x}{\left(x-5\right)x} and \frac{\left(x+1\right)\left(x+6\right)}{\left(x-5\right)x} have the same denominator, add them by adding their numerators.
\frac{\frac{30}{x\left(x-5\right)}}{\frac{x^{2}-5x+x^{2}+6x+x+6}{\left(x-5\right)x}}
Do the multiplications in \left(x-5\right)x+\left(x+1\right)\left(x+6\right).
\frac{\frac{30}{x\left(x-5\right)}}{\frac{2x^{2}+2x+6}{\left(x-5\right)x}}
Combine like terms in x^{2}-5x+x^{2}+6x+x+6.
\frac{30\left(x-5\right)x}{x\left(x-5\right)\left(2x^{2}+2x+6\right)}
Divide \frac{30}{x\left(x-5\right)} by \frac{2x^{2}+2x+6}{\left(x-5\right)x} by multiplying \frac{30}{x\left(x-5\right)} by the reciprocal of \frac{2x^{2}+2x+6}{\left(x-5\right)x}.
\frac{30}{2x^{2}+2x+6}
Cancel out x\left(x-5\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}