\frac { | + i } { 2 + b i } = \frac { 1 } { 2 } i
Solve for b
b=-2+2i
Share
Copied to clipboard
|i|=\frac{1}{2}i\left(ib+2\right)
Variable b cannot be equal to 2i since division by zero is not defined. Multiply both sides of the equation by ib+2.
1=\frac{1}{2}i\left(ib+2\right)
The modulus of a complex number a+bi is \sqrt{a^{2}+b^{2}}. The modulus of i is 1.
1=-\frac{1}{2}b+i
Use the distributive property to multiply \frac{1}{2}i by ib+2.
-\frac{1}{2}b+i=1
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}b=1-i
Subtract i from both sides.
b=\left(1-i\right)\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
b=-2+2i
Multiply 1-i and -2 to get -2+2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}