Solve for A
\left\{\begin{matrix}A=0\text{, }&d_{1}\neq 0\text{ and }d_{2}\neq 0\\A\in \mathrm{R}\text{, }&\left(d_{1}=-\frac{d_{2}}{1-d_{2}f}\text{ and }d_{2}\neq \frac{1}{f}\text{ and }f\neq 0\text{ and }d_{2}\neq 0\right)\text{ or }\left(d_{1}=-d_{2}\text{ and }f=0\text{ and }d_{2}\neq 0\right)\text{ or }\left(\epsilon =0\text{ and }d_{1}\neq 0\text{ and }d_{2}\neq 0\right)\end{matrix}\right.
Solve for d_1
\left\{\begin{matrix}d_{1}=-\frac{d_{2}}{1-d_{2}f}\text{, }&\left(f=0\text{ or }d_{2}\neq \frac{1}{f}\right)\text{ and }d_{2}\neq 0\\d_{1}\neq 0\text{, }&\left(A=0\text{ or }\epsilon =0\right)\text{ and }d_{2}\neq 0\end{matrix}\right.
Share
Copied to clipboard
d_{2}\epsilon A+d_{1}\epsilon A=d_{1}fd_{2}\epsilon A
Multiply both sides of the equation by d_{1}d_{2}, the least common multiple of d_{1},d_{2},d_{1}d_{2}.
d_{2}\epsilon A+d_{1}\epsilon A-d_{1}fd_{2}\epsilon A=0
Subtract d_{1}fd_{2}\epsilon A from both sides.
-Ad_{1}d_{2}f\epsilon +Ad_{1}\epsilon +Ad_{2}\epsilon =0
Reorder the terms.
\left(-d_{1}d_{2}f\epsilon +d_{1}\epsilon +d_{2}\epsilon \right)A=0
Combine all terms containing A.
\left(d_{2}\epsilon +d_{1}\epsilon -d_{1}d_{2}f\epsilon \right)A=0
The equation is in standard form.
A=0
Divide 0 by -d_{1}d_{2}f\epsilon +d_{1}\epsilon +d_{2}\epsilon .
d_{2}\epsilon A+d_{1}\epsilon A=d_{1}fd_{2}\epsilon A
Variable d_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d_{1}d_{2}, the least common multiple of d_{1},d_{2},d_{1}d_{2}.
d_{2}\epsilon A+d_{1}\epsilon A-d_{1}fd_{2}\epsilon A=0
Subtract d_{1}fd_{2}\epsilon A from both sides.
d_{1}\epsilon A-d_{1}fd_{2}\epsilon A=-d_{2}\epsilon A
Subtract d_{2}\epsilon A from both sides. Anything subtracted from zero gives its negation.
\left(\epsilon A-fd_{2}\epsilon A\right)d_{1}=-d_{2}\epsilon A
Combine all terms containing d_{1}.
\left(A\epsilon -Ad_{2}f\epsilon \right)d_{1}=-Ad_{2}\epsilon
The equation is in standard form.
\frac{\left(A\epsilon -Ad_{2}f\epsilon \right)d_{1}}{A\epsilon -Ad_{2}f\epsilon }=-\frac{Ad_{2}\epsilon }{A\epsilon -Ad_{2}f\epsilon }
Divide both sides by \epsilon A-fd_{2}\epsilon A.
d_{1}=-\frac{Ad_{2}\epsilon }{A\epsilon -Ad_{2}f\epsilon }
Dividing by \epsilon A-fd_{2}\epsilon A undoes the multiplication by \epsilon A-fd_{2}\epsilon A.
d_{1}=-\frac{d_{2}}{1-d_{2}f}
Divide -d_{2}\epsilon A by \epsilon A-fd_{2}\epsilon A.
d_{1}=-\frac{d_{2}}{1-d_{2}f}\text{, }d_{1}\neq 0
Variable d_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}