Skip to main content
Solve for b
Tick mark Image
Solve for A
Tick mark Image

Similar Problems from Web Search

Share

bCosI(A)\left(SinI(A)\left(1-CosI(A)\right)\right)^{-1}\left(\tan(A)+\sin(A)\right)=\pi
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\left(\tan(A)+\sin(A)\right)=\pi
Use the distributive property to multiply SinI(A) by 1-CosI(A).
bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A)=\pi
Use the distributive property to multiply bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1} by \tan(A)+\sin(A).
\left(CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A)\right)b=\pi
Combine all terms containing b.
\frac{\cos(A)\left(\sin(A)+\tan(A)\right)}{\sin(A)\left(-\cos(A)+1\right)}b=\pi
The equation is in standard form.
\frac{\frac{\cos(A)\left(\sin(A)+\tan(A)\right)}{\sin(A)\left(-\cos(A)+1\right)}b\sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}=\frac{\pi \sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}
Divide both sides by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}
Dividing by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A) undoes the multiplication by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \left(-\cos(A)+1\right)}{\cos(A)+1}
Divide \pi by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \left(-\cos(A)+1\right)}{\cos(A)+1}\text{, }b\neq 0
Variable b cannot be equal to 0.