Solve for b
b=-\pi \left(\tan(\frac{A}{2})\right)^{2}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(A>\frac{\pi n_{1}}{2}\text{ and }A<\frac{\pi n_{1}}{2}+\frac{\pi }{2}\right)
Solve for A
A=2\pi n_{1}+\arccos(\frac{b-\pi }{b+\pi })-\pi \text{, }n_{1}\in \mathrm{Z}
A=2\pi n_{2}-\arccos(\frac{b-\pi }{b+\pi })+\pi \text{, }n_{2}\in \mathrm{Z}\text{, }b>0
Share
Copied to clipboard
bCosI(A)\left(SinI(A)\left(1-CosI(A)\right)\right)^{-1}\left(\tan(A)+\sin(A)\right)=\pi
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\left(\tan(A)+\sin(A)\right)=\pi
Use the distributive property to multiply SinI(A) by 1-CosI(A).
bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A)=\pi
Use the distributive property to multiply bCosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1} by \tan(A)+\sin(A).
\left(CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A)\right)b=\pi
Combine all terms containing b.
\frac{\cos(A)\left(\sin(A)+\tan(A)\right)}{\sin(A)\left(-\cos(A)+1\right)}b=\pi
The equation is in standard form.
\frac{\frac{\cos(A)\left(\sin(A)+\tan(A)\right)}{\sin(A)\left(-\cos(A)+1\right)}b\sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}=\frac{\pi \sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}
Divide both sides by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \sin(A)\left(-\cos(A)+1\right)}{\cos(A)\left(\sin(A)+\tan(A)\right)}
Dividing by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A) undoes the multiplication by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \left(-\cos(A)+1\right)}{\cos(A)+1}
Divide \pi by CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\tan(A)+CosI(A)\left(SinI(A)-SinI(A)CosI(A)\right)^{-1}\sin(A).
b=\frac{\pi \left(-\cos(A)+1\right)}{\cos(A)+1}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}