Evaluate
\sqrt{3}+2\approx 3.732050808
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{3}+\tan(45)}{1-\tan(30)\tan(45)}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{\sqrt{3}}{3}+1}{1-\tan(30)\tan(45)}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{\sqrt{3}}{3}+\frac{3}{3}}{1-\tan(30)\tan(45)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{\sqrt{3}+3}{3}}{1-\tan(30)\tan(45)}
Since \frac{\sqrt{3}}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{\sqrt{3}+3}{3}}{1-\frac{\sqrt{3}}{3}\tan(45)}
Get the value of \tan(30) from trigonometric values table.
\frac{\frac{\sqrt{3}+3}{3}}{1-\frac{\sqrt{3}}{3}\times 1}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{\sqrt{3}+3}{3}}{1-\frac{\sqrt{3}}{3}}
Express \frac{\sqrt{3}}{3}\times 1 as a single fraction.
\frac{\frac{\sqrt{3}+3}{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{\sqrt{3}+3}{3}}{\frac{3-\sqrt{3}}{3}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{3}+3\right)\times 3}{3\left(3-\sqrt{3}\right)}
Divide \frac{\sqrt{3}+3}{3} by \frac{3-\sqrt{3}}{3} by multiplying \frac{\sqrt{3}+3}{3} by the reciprocal of \frac{3-\sqrt{3}}{3}.
\frac{\sqrt{3}+3}{-\sqrt{3}+3}
Cancel out 3 in both numerator and denominator.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}
Rationalize the denominator of \frac{\sqrt{3}+3}{-\sqrt{3}+3} by multiplying numerator and denominator by -\sqrt{3}-3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-\sqrt{3}\right)^{2}-3^{2}}
Consider \left(-\sqrt{3}+3\right)\left(-\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{\left(-1\right)^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Expand \left(-\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{1\left(\sqrt{3}\right)^{2}-3^{2}}
Calculate -1 to the power of 2 and get 1.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{1\times 3-3^{2}}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{3-3^{2}}
Multiply 1 and 3 to get 3.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{3-9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{3}+3\right)\left(-\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{-\left(\sqrt{3}\right)^{2}-6\sqrt{3}-9}{-6}
Use the distributive property to multiply \sqrt{3}+3 by -\sqrt{3}-3 and combine like terms.
\frac{-3-6\sqrt{3}-9}{-6}
The square of \sqrt{3} is 3.
\frac{-12-6\sqrt{3}}{-6}
Subtract 9 from -3 to get -12.
2+\sqrt{3}
Divide each term of -12-6\sqrt{3} by -6 to get 2+\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}