Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calculate \sqrt[5]{\frac{1}{32}} and get \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Calculate \frac{2}{3} to the power of -1 and get \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divide \frac{1}{2} by \frac{3}{2} by multiplying \frac{1}{2} by the reciprocal of \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply \frac{1}{2} and \frac{2}{3} to get \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtract \frac{1}{3} from 1 to get \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{1}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply \frac{2}{3} and \frac{1}{2} to get \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{5}{6}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Add \frac{1}{3} and \frac{1}{2} to get \frac{5}{6}.
\frac{1}{3}\times \frac{6}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Divide \frac{1}{3} by \frac{5}{6} by multiplying \frac{1}{3} by the reciprocal of \frac{5}{6}.
\frac{2}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Multiply \frac{1}{3} and \frac{6}{5} to get \frac{2}{5}.
\frac{2}{5}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Rewrite the square root of the division \frac{9}{25} as the division of square roots \frac{\sqrt{9}}{\sqrt{25}}. Take the square root of both numerator and denominator.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Calculate \frac{15}{2} to the power of 1 and get \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Divide \frac{4}{5} by \frac{15}{2} by multiplying \frac{4}{5} by the reciprocal of \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{8}{75}}
Multiply \frac{4}{5} and \frac{2}{15} to get \frac{8}{75}.
\frac{2}{5}+\frac{3}{5}\times \frac{75}{8}
Divide \frac{3}{5} by \frac{8}{75} by multiplying \frac{3}{5} by the reciprocal of \frac{8}{75}.
\frac{2}{5}+\frac{45}{8}
Multiply \frac{3}{5} and \frac{75}{8} to get \frac{45}{8}.
\frac{241}{40}
Add \frac{2}{5} and \frac{45}{8} to get \frac{241}{40}.