Skip to main content
Differentiate w.r.t. x
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}}{x^{2}}+\frac{\left(6x-2\right)x^{2}}{x^{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x-2 times \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}+\left(6x-2\right)x^{2}}{x^{2}})
Since \frac{\sqrt{x}}{x^{2}} and \frac{\left(6x-2\right)x^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}+6x^{3}-2x^{2}}{x^{2}})
Do the multiplications in \sqrt{x}+\left(6x-2\right)x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)}{x^{2}})
Factor the expressions that are not already factored in \frac{\sqrt{x}+6x^{3}-2x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1}{x^{\frac{3}{2}}})
Cancel out \sqrt{x} in both numerator and denominator.
\frac{x^{\frac{3}{2}}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{3}{2}})}{\left(x^{\frac{3}{2}}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{x^{\frac{3}{2}}\left(\frac{5}{2}\times 6x^{\frac{5}{2}-1}+\frac{3}{2}\left(-2\right)x^{\frac{3}{2}-1}\right)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}x^{\frac{3}{2}-1}}{\left(x^{\frac{3}{2}}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{x^{\frac{3}{2}}\left(15x^{\frac{3}{2}}-3\sqrt{x}\right)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{2}}
Simplify.
\frac{x^{\frac{3}{2}}\times 15x^{\frac{3}{2}}+x^{\frac{3}{2}}\left(-3\right)\sqrt{x}-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{2}}
Multiply x^{\frac{3}{2}} times 15x^{\frac{3}{2}}-3\sqrt{x}.
\frac{x^{\frac{3}{2}}\times 15x^{\frac{3}{2}}+x^{\frac{3}{2}}\left(-3\right)\sqrt{x}-\left(6x^{\frac{5}{2}}\times \frac{3}{2}\sqrt{x}-2x^{\frac{3}{2}}\times \frac{3}{2}\sqrt{x}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
Multiply 6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1 times \frac{3}{2}\sqrt{x}.
\frac{15x^{\frac{3+3}{2}}-3x^{\frac{3+1}{2}}-\left(6\times \frac{3}{2}x^{\frac{5+1}{2}}-2\times \frac{3}{2}x^{\frac{3+1}{2}}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{15x^{3}-3x^{2}-\left(9x^{3}-3x^{2}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
Simplify.
\frac{6x^{3}-\frac{3}{2}x^{\frac{3}{2}}}{\left(x^{\frac{3}{2}}\right)^{2}}
Combine like terms.