Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1=y\left(x-2\right)
Multiply both sides of the equation by x-2.
\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1=yx-2y
Use the distributive property to multiply y by x-2.
yx-2y=\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1
Swap sides so that all variable terms are on the left hand side.
\left(x-2\right)y=\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1
Combine all terms containing y.
\left(x-2\right)y=\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1
The equation is in standard form.
\frac{\left(x-2\right)y}{x-2}=\frac{\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1}{x-2}
Divide both sides by x-2.
y=\frac{\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1=y\left(x-2\right)
Multiply both sides of the equation by x-2.
\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1=yx-2y
Use the distributive property to multiply y by x-2.
yx-2y=\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1
Swap sides so that all variable terms are on the left hand side.
\left(x-2\right)y=\sqrt{x^{2}-4}+\sqrt{4-x^{2}}+1
Combine all terms containing y.
\left(x-2\right)y=\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1
The equation is in standard form.
\frac{\left(x-2\right)y}{x-2}=\frac{\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1}{x-2}
Divide both sides by -2+x.
y=\frac{\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1}{x-2}
Dividing by -2+x undoes the multiplication by -2+x.
y=-\frac{\sqrt{4-x^{2}}+\sqrt{-\left(4-x^{2}\right)}+1}{2-x}
Divide \sqrt{-\left(-x^{2}+4\right)}+\sqrt{4-x^{2}}+1 by -2+x.