Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{\left(\sqrt{x^{2}+y^{2}}+x\right)\left(x-\sqrt{x^{2}+y^{2}}\right)}{\left(y+\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}-y\right)}
Multiply \frac{\sqrt{x^{2}+y^{2}}+x}{y+\sqrt{x^{2}-y^{2}}} times \frac{x-\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}-y} by multiplying numerator times numerator and denominator times denominator.
\frac{x^{2}-\left(\sqrt{x^{2}+y^{2}}\right)^{2}}{\left(y+\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}-y\right)}
Consider \left(\sqrt{x^{2}+y^{2}}+x\right)\left(x-\sqrt{x^{2}+y^{2}}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-\left(x^{2}+y^{2}\right)}{\left(y+\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}-y\right)}
Calculate \sqrt{x^{2}+y^{2}} to the power of 2 and get x^{2}+y^{2}.
\frac{x^{2}-\left(x^{2}+y^{2}\right)}{\left(\sqrt{x^{2}-y^{2}}\right)^{2}-y^{2}}
Consider \left(y+\sqrt{x^{2}-y^{2}}\right)\left(\sqrt{x^{2}-y^{2}}-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}-\left(x^{2}+y^{2}\right)}{x^{2}-y^{2}-y^{2}}
Calculate \sqrt{x^{2}-y^{2}} to the power of 2 and get x^{2}-y^{2}.
\frac{x^{2}-\left(x^{2}+y^{2}\right)}{x^{2}-2y^{2}}
Combine -y^{2} and -y^{2} to get -2y^{2}.
\frac{x^{2}-x^{2}-y^{2}}{x^{2}-2y^{2}}
To find the opposite of x^{2}+y^{2}, find the opposite of each term.
\frac{-y^{2}}{x^{2}-2y^{2}}
Combine x^{2} and -x^{2} to get 0.