Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{x+4}{2}x+8}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{\left(x+4\right)x}{2}+8}
Express \frac{x+4}{2}x as a single fraction.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{x^{2}+4x}{2}+8}
Use the distributive property to multiply x+4 by x.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{1}{2}x^{2}+2x+8}
Divide each term of x^{2}+4x by 2 to get \frac{1}{2}x^{2}+2x.
\frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}y=\sqrt{\frac{x^{2}}{2}+2x+8}
The equation is in standard form.
\frac{\frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}y\sqrt{x^{2}+4x+8}}{\sqrt{x^{2}+4x+12}}=\frac{\sqrt{2x^{2}+8x+32}}{2\times \frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}}
Divide both sides by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{2x^{2}+8x+32}}{2\times \frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}}
Dividing by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12} undoes the multiplication by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{\frac{2\left(x^{2}+4x+8\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+12}}}{2}
Divide \frac{\sqrt{2x^{2}+8x+32}}{2} by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{\frac{2\left(x^{2}+4x+8\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+12}}}{2}\text{, }y\neq 0
Variable y cannot be equal to 0.