Solve for y
y=\frac{\sqrt{\frac{2\left(x^{2}+4x+8\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+12}}}{2}
Solve for x
x=-\sqrt{\sqrt{y^{4}+16}+y^{2}-8}-2
x=\sqrt{\sqrt{y^{4}+16}+y^{2}-8}-2\text{, }y\geq \sqrt{3}
Graph
Share
Copied to clipboard
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{x+4}{2}x+8}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{\left(x+4\right)x}{2}+8}
Express \frac{x+4}{2}x as a single fraction.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{x^{2}+4x}{2}+8}
Use the distributive property to multiply x+4 by x.
y\left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}=\sqrt{\frac{1}{2}x^{2}+2x+8}
Divide each term of x^{2}+4x by 2 to get \frac{1}{2}x^{2}+2x.
\frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}y=\sqrt{\frac{x^{2}}{2}+2x+8}
The equation is in standard form.
\frac{\frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}y\sqrt{x^{2}+4x+8}}{\sqrt{x^{2}+4x+12}}=\frac{\sqrt{2x^{2}+8x+32}}{2\times \frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}}
Divide both sides by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{2x^{2}+8x+32}}{2\times \frac{\sqrt{x^{2}+4x+12}}{\sqrt{x^{2}+4x+8}}}
Dividing by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12} undoes the multiplication by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{\frac{2\left(x^{2}+4x+8\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+12}}}{2}
Divide \frac{\sqrt{2x^{2}+8x+32}}{2} by \left(x^{2}+4x+8\right)^{-\frac{1}{2}}\sqrt{x^{2}+4x+12}.
y=\frac{\sqrt{\frac{2\left(x^{2}+4x+8\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+12}}}{2}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}