Solve for y
y=-\frac{x\left(1-577729296x\right)}{7}
x>0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{-\sqrt{16176420288y+1}+1}{1155458592}\text{, }&arg(\frac{-\sqrt{16176420288y+1}+1}{1155458592})<\pi \text{ and }y\neq 0\\x=\frac{\sqrt{16176420288y+1}+1}{1155458592}\text{, }&arg(\frac{\sqrt{16176420288y+1}+1}{1155458592})<\pi \end{matrix}\right.
Solve for y (complex solution)
y=-\frac{x\left(1-577729296x\right)}{7}
arg(x)<\pi \text{ and }x\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{16176420288y+1}+1}{1155458592}\text{, }&y\geq -\frac{1}{16176420288}\\x=\frac{-\sqrt{16176420288y+1}+1}{1155458592}\text{, }&y\geq -\frac{1}{16176420288}\text{ and }y<0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{\frac{1}{3x}\sqrt{7y+x}\times 3x}{1}=\frac{8012\times 3x}{1}
Divide both sides by \frac{1}{3}x^{-1}.
\sqrt{7y+x}=\frac{8012\times 3x}{1}
Dividing by \frac{1}{3}x^{-1} undoes the multiplication by \frac{1}{3}x^{-1}.
\sqrt{7y+x}=24036x
Divide 8012 by \frac{1}{3}x^{-1}.
7y+x=577729296x^{2}
Square both sides of the equation.
7y+x-x=577729296x^{2}-x
Subtract x from both sides of the equation.
7y=577729296x^{2}-x
Subtracting x from itself leaves 0.
7y=x\left(577729296x-1\right)
Subtract x from 577729296x^{2}.
\frac{7y}{7}=\frac{x\left(577729296x-1\right)}{7}
Divide both sides by 7.
y=\frac{x\left(577729296x-1\right)}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}