Evaluate
\frac{3\sqrt{35}}{5}\approx 3.54964787
Share
Copied to clipboard
\frac{9\sqrt{175}}{\sqrt{1125}}
Calculate the square root of 81 and get 9.
\frac{9\times 5\sqrt{7}}{\sqrt{1125}}
Factor 175=5^{2}\times 7. Rewrite the square root of the product \sqrt{5^{2}\times 7} as the product of square roots \sqrt{5^{2}}\sqrt{7}. Take the square root of 5^{2}.
\frac{45\sqrt{7}}{\sqrt{1125}}
Multiply 9 and 5 to get 45.
\frac{45\sqrt{7}}{15\sqrt{5}}
Factor 1125=15^{2}\times 5. Rewrite the square root of the product \sqrt{15^{2}\times 5} as the product of square roots \sqrt{15^{2}}\sqrt{5}. Take the square root of 15^{2}.
\frac{3\sqrt{7}}{\sqrt{5}}
Cancel out 15 in both numerator and denominator.
\frac{3\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{7}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{7}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{35}}{5}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}