Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\sqrt{5}-\sqrt{112}}{\sqrt{45}-\sqrt{63}}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{4\sqrt{5}-4\sqrt{7}}{\sqrt{45}-\sqrt{63}}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
\frac{4\sqrt{5}-4\sqrt{7}}{3\sqrt{5}-\sqrt{63}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{4\sqrt{5}-4\sqrt{7}}{3\sqrt{5}-3\sqrt{7}}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{\left(3\sqrt{5}-3\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}
Rationalize the denominator of \frac{4\sqrt{5}-4\sqrt{7}}{3\sqrt{5}-3\sqrt{7}} by multiplying numerator and denominator by 3\sqrt{5}+3\sqrt{7}.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{\left(3\sqrt{5}\right)^{2}-\left(-3\sqrt{7}\right)^{2}}
Consider \left(3\sqrt{5}-3\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(-3\sqrt{7}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{9\left(\sqrt{5}\right)^{2}-\left(-3\sqrt{7}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{9\times 5-\left(-3\sqrt{7}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{45-\left(-3\sqrt{7}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{45-\left(-3\right)^{2}\left(\sqrt{7}\right)^{2}}
Expand \left(-3\sqrt{7}\right)^{2}.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{45-9\left(\sqrt{7}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{45-9\times 7}
The square of \sqrt{7} is 7.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{45-63}
Multiply 9 and 7 to get 63.
\frac{\left(4\sqrt{5}-4\sqrt{7}\right)\left(3\sqrt{5}+3\sqrt{7}\right)}{-18}
Subtract 63 from 45 to get -18.
\frac{12\left(\sqrt{5}\right)^{2}+12\sqrt{5}\sqrt{7}-12\sqrt{7}\sqrt{5}-12\left(\sqrt{7}\right)^{2}}{-18}
Apply the distributive property by multiplying each term of 4\sqrt{5}-4\sqrt{7} by each term of 3\sqrt{5}+3\sqrt{7}.
\frac{12\times 5+12\sqrt{5}\sqrt{7}-12\sqrt{7}\sqrt{5}-12\left(\sqrt{7}\right)^{2}}{-18}
The square of \sqrt{5} is 5.
\frac{60+12\sqrt{5}\sqrt{7}-12\sqrt{7}\sqrt{5}-12\left(\sqrt{7}\right)^{2}}{-18}
Multiply 12 and 5 to get 60.
\frac{60+12\sqrt{35}-12\sqrt{7}\sqrt{5}-12\left(\sqrt{7}\right)^{2}}{-18}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{60+12\sqrt{35}-12\sqrt{35}-12\left(\sqrt{7}\right)^{2}}{-18}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{60-12\left(\sqrt{7}\right)^{2}}{-18}
Combine 12\sqrt{35} and -12\sqrt{35} to get 0.
\frac{60-12\times 7}{-18}
The square of \sqrt{7} is 7.
\frac{60-84}{-18}
Multiply -12 and 7 to get -84.
\frac{-24}{-18}
Subtract 84 from 60 to get -24.
\frac{4}{3}
Reduce the fraction \frac{-24}{-18} to lowest terms by extracting and canceling out -6.