Solve for q
q=\frac{\left(\sqrt{2}-1\right)p}{2}
p\neq 0
Solve for p
p=2\left(\sqrt{2}+1\right)q
q\neq 0
Share
Copied to clipboard
q\left(\sqrt{8}+2\right)=p
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by q.
q\left(2\sqrt{2}+2\right)=p
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2q\sqrt{2}+2q=p
Use the distributive property to multiply q by 2\sqrt{2}+2.
\left(2\sqrt{2}+2\right)q=p
Combine all terms containing q.
\frac{\left(2\sqrt{2}+2\right)q}{2\sqrt{2}+2}=\frac{p}{2\sqrt{2}+2}
Divide both sides by 2\sqrt{2}+2.
q=\frac{p}{2\sqrt{2}+2}
Dividing by 2\sqrt{2}+2 undoes the multiplication by 2\sqrt{2}+2.
q=\frac{\sqrt{2}p-p}{2}
Divide p by 2\sqrt{2}+2.
q=\frac{\sqrt{2}p-p}{2}\text{, }q\neq 0
Variable q cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}