Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{3}-\sqrt{18}}{\sqrt{12}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{5\sqrt{3}-3\sqrt{2}}{\sqrt{12}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{5\sqrt{3}-3\sqrt{2}}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{3}-3\sqrt{2}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\frac{5\left(\sqrt{3}\right)^{2}-3\sqrt{2}\sqrt{3}}{6}
Use the distributive property to multiply 5\sqrt{3}-3\sqrt{2} by \sqrt{3}.
\frac{5\times 3-3\sqrt{2}\sqrt{3}}{6}
The square of \sqrt{3} is 3.
\frac{15-3\sqrt{2}\sqrt{3}}{6}
Multiply 5 and 3 to get 15.
\frac{15-3\sqrt{6}}{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.