Evaluate
\frac{6\sqrt{47}}{47}+\frac{5}{2}-4\sqrt{3}\approx -3.553013281
Share
Copied to clipboard
\frac{5\sqrt{3}}{\sqrt{12}}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{5\sqrt{3}}{2\sqrt{3}}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{5}{2}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{5}{2}+\frac{6\sqrt{3}}{\sqrt{141}}-\sqrt{48}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{141}}{\left(\sqrt{141}\right)^{2}}-\sqrt{48}
Rationalize the denominator of \frac{6\sqrt{3}}{\sqrt{141}} by multiplying numerator and denominator by \sqrt{141}.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{141}}{141}-\sqrt{48}
The square of \sqrt{141} is 141.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{3}\sqrt{47}}{141}-\sqrt{48}
Factor 141=3\times 47. Rewrite the square root of the product \sqrt{3\times 47} as the product of square roots \sqrt{3}\sqrt{47}.
\frac{5}{2}+\frac{6\times 3\sqrt{47}}{141}-\sqrt{48}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{5}{2}+\frac{18\sqrt{47}}{141}-\sqrt{48}
Multiply 6 and 3 to get 18.
\frac{5}{2}+\frac{6}{47}\sqrt{47}-\sqrt{48}
Divide 18\sqrt{47} by 141 to get \frac{6}{47}\sqrt{47}.
\frac{5}{2}+\frac{6}{47}\sqrt{47}-4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}