Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{3}}{\sqrt{12}}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{5\sqrt{3}}{2\sqrt{3}}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{5}{2}+\frac{\sqrt{108}}{\sqrt{141}}-\sqrt{48}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{5}{2}+\frac{6\sqrt{3}}{\sqrt{141}}-\sqrt{48}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{141}}{\left(\sqrt{141}\right)^{2}}-\sqrt{48}
Rationalize the denominator of \frac{6\sqrt{3}}{\sqrt{141}} by multiplying numerator and denominator by \sqrt{141}.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{141}}{141}-\sqrt{48}
The square of \sqrt{141} is 141.
\frac{5}{2}+\frac{6\sqrt{3}\sqrt{3}\sqrt{47}}{141}-\sqrt{48}
Factor 141=3\times 47. Rewrite the square root of the product \sqrt{3\times 47} as the product of square roots \sqrt{3}\sqrt{47}.
\frac{5}{2}+\frac{6\times 3\sqrt{47}}{141}-\sqrt{48}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{5}{2}+\frac{18\sqrt{47}}{141}-\sqrt{48}
Multiply 6 and 3 to get 18.
\frac{5}{2}+\frac{6}{47}\sqrt{47}-\sqrt{48}
Divide 18\sqrt{47} by 141 to get \frac{6}{47}\sqrt{47}.
\frac{5}{2}+\frac{6}{47}\sqrt{47}-4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.