Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{3}+\sqrt{50}}{\sqrt{5}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{5\sqrt{3}+5\sqrt{2}}{\sqrt{5}}
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{\left(5\sqrt{3}+5\sqrt{2}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{3}+5\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\left(5\sqrt{3}+5\sqrt{2}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{5\sqrt{3}\sqrt{5}+5\sqrt{2}\sqrt{5}}{5}
Use the distributive property to multiply 5\sqrt{3}+5\sqrt{2} by \sqrt{5}.
\frac{5\sqrt{15}+5\sqrt{2}\sqrt{5}}{5}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{5\sqrt{15}+5\sqrt{10}}{5}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\sqrt{15}+\sqrt{10}
Divide each term of 5\sqrt{15}+5\sqrt{10} by 5 to get \sqrt{15}+\sqrt{10}.