Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{3}+\sqrt{30}}{\sqrt{3}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{\left(5\sqrt{3}+\sqrt{30}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{3}+\sqrt{30}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(5\sqrt{3}+\sqrt{30}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{5\left(\sqrt{3}\right)^{2}+\sqrt{30}\sqrt{3}}{3}
Use the distributive property to multiply 5\sqrt{3}+\sqrt{30} by \sqrt{3}.
\frac{5\times 3+\sqrt{30}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{15+\sqrt{30}\sqrt{3}}{3}
Multiply 5 and 3 to get 15.
\frac{15+\sqrt{3}\sqrt{10}\sqrt{3}}{3}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{15+3\sqrt{10}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
5+\sqrt{10}
Divide each term of 15+3\sqrt{10} by 3 to get 5+\sqrt{10}.