Evaluate
-5\sqrt{3}-4\approx -12.660254038
Share
Copied to clipboard
\frac{6\sqrt{2}-\sqrt{24}}{\sqrt{8}}-\left(2+\sqrt{3}\right)^{2}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{6\sqrt{2}-2\sqrt{6}}{\sqrt{8}}-\left(2+\sqrt{3}\right)^{2}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{6\sqrt{2}-2\sqrt{6}}{2\sqrt{2}}-\left(2+\sqrt{3}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\left(2+\sqrt{3}\right)^{2}
Rationalize the denominator of \frac{6\sqrt{2}-2\sqrt{6}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{2\times 2}-\left(2+\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4}-\left(2+\sqrt{3}\right)^{2}
Multiply 2 and 2 to get 4.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4}-\left(4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3}\right)^{2}.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4}-\left(4+4\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4}-\left(7+4\sqrt{3}\right)
Add 4 and 3 to get 7.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4}-\frac{4\left(7+4\sqrt{3}\right)}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply 7+4\sqrt{3} times \frac{4}{4}.
\frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}-4\left(7+4\sqrt{3}\right)}{4}
Since \frac{\left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}}{4} and \frac{4\left(7+4\sqrt{3}\right)}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{12-4\sqrt{3}-28-16\sqrt{3}}{4}
Do the multiplications in \left(6\sqrt{2}-2\sqrt{6}\right)\sqrt{2}-4\left(7+4\sqrt{3}\right).
\frac{-16-20\sqrt{3}}{4}
Do the calculations in 12-4\sqrt{3}-28-16\sqrt{3}.
-4-5\sqrt{3}
Divide each term of -16-20\sqrt{3} by 4 to get -4-5\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}