Solve for b
b=-\frac{\sqrt{7}\left(6a+\sqrt{66}-3\sqrt{3}\right)}{42}
Solve for a
a=-\frac{3\sqrt{7}b}{3}+\frac{\sqrt{3}}{2}-\frac{\sqrt{66}}{6}
Share
Copied to clipboard
\frac{\sqrt{6}}{\sqrt{7+1}}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Subtract 1 from 7 to get 6.
\frac{\sqrt{6}}{\sqrt{8}}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Add 7 and 1 to get 8.
\frac{\sqrt{6}}{2\sqrt{2}}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{6}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Rationalize the denominator of \frac{\sqrt{6}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{6}\sqrt{2}}{2\times 2}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}\sqrt{3}\sqrt{2}}{2\times 2}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}}{2\times 2}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{3}}{4}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Multiply 2 and 2 to get 4.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{7+4}}{\sqrt{7-1}}=a+b\sqrt{7}
Divide 2\sqrt{3} by 4 to get \frac{1}{2}\sqrt{3}.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{11}}{\sqrt{7-1}}=a+b\sqrt{7}
Add 7 and 4 to get 11.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{11}}{\sqrt{6}}=a+b\sqrt{7}
Subtract 1 from 7 to get 6.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{11}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}=a+b\sqrt{7}
Rationalize the denominator of \frac{\sqrt{11}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{11}\sqrt{6}}{6}=a+b\sqrt{7}
The square of \sqrt{6} is 6.
\frac{1}{2}\sqrt{3}-\frac{\sqrt{66}}{6}=a+b\sqrt{7}
To multiply \sqrt{11} and \sqrt{6}, multiply the numbers under the square root.
a+b\sqrt{7}=\frac{1}{2}\sqrt{3}-\frac{\sqrt{66}}{6}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{7}=\frac{1}{2}\sqrt{3}-\frac{\sqrt{66}}{6}-a
Subtract a from both sides.
6b\sqrt{7}=3\sqrt{3}-\sqrt{66}-6a
Multiply both sides of the equation by 6, the least common multiple of 2,6.
6\sqrt{7}b=-6a+3\sqrt{3}-\sqrt{66}
The equation is in standard form.
\frac{6\sqrt{7}b}{6\sqrt{7}}=\frac{-6a+3\sqrt{3}-\sqrt{66}}{6\sqrt{7}}
Divide both sides by 6\sqrt{7}.
b=\frac{-6a+3\sqrt{3}-\sqrt{66}}{6\sqrt{7}}
Dividing by 6\sqrt{7} undoes the multiplication by 6\sqrt{7}.
b=\frac{\sqrt{7}\left(-6a+3\sqrt{3}-\sqrt{66}\right)}{42}
Divide 3\sqrt{3}-\sqrt{66}-6a by 6\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}