Evaluate
-\frac{2\sqrt{7}}{3}\approx -1.763834207
Share
Copied to clipboard
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Rationalize the denominator of \frac{\sqrt{7}-1}{\sqrt{7}+1} by multiplying numerator and denominator by \sqrt{7}-1.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Consider \left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{7-1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Square \sqrt{7}. Square 1.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Subtract 1 from 7 to get 6.
\frac{\left(\sqrt{7}-1\right)^{2}}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Multiply \sqrt{7}-1 and \sqrt{7}-1 to get \left(\sqrt{7}-1\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}+1}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-1\right)^{2}.
\frac{7-2\sqrt{7}+1}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
The square of \sqrt{7} is 7.
\frac{8-2\sqrt{7}}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Add 7 and 1 to get 8.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}
Rationalize the denominator of \frac{\sqrt{7}+1}{\sqrt{7}-1} by multiplying numerator and denominator by \sqrt{7}+1.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}
Consider \left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{7-1}
Square \sqrt{7}. Square 1.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{6}
Subtract 1 from 7 to get 6.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)^{2}}{6}
Multiply \sqrt{7}+1 and \sqrt{7}+1 to get \left(\sqrt{7}+1\right)^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{6}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{7+2\sqrt{7}+1}{6}
The square of \sqrt{7} is 7.
\frac{8-2\sqrt{7}}{6}-\frac{8+2\sqrt{7}}{6}
Add 7 and 1 to get 8.
\frac{8-2\sqrt{7}-\left(8+2\sqrt{7}\right)}{6}
Since \frac{8-2\sqrt{7}}{6} and \frac{8+2\sqrt{7}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{8-2\sqrt{7}-8-2\sqrt{7}}{6}
Do the multiplications in 8-2\sqrt{7}-\left(8+2\sqrt{7}\right).
\frac{-4\sqrt{7}}{6}
Do the calculations in 8-2\sqrt{7}-8-2\sqrt{7}.
-\frac{2}{3}\sqrt{7}
Divide -4\sqrt{7} by 6 to get -\frac{2}{3}\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}