Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Rationalize the denominator of \frac{\sqrt{7}-1}{\sqrt{7}+1} by multiplying numerator and denominator by \sqrt{7}-1.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Consider \left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{7-1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Square \sqrt{7}. Square 1.
\frac{\left(\sqrt{7}-1\right)\left(\sqrt{7}-1\right)}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Subtract 1 from 7 to get 6.
\frac{\left(\sqrt{7}-1\right)^{2}}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Multiply \sqrt{7}-1 and \sqrt{7}-1 to get \left(\sqrt{7}-1\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}+1}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-1\right)^{2}.
\frac{7-2\sqrt{7}+1}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
The square of \sqrt{7} is 7.
\frac{8-2\sqrt{7}}{6}-\frac{\sqrt{7}+1}{\sqrt{7}-1}
Add 7 and 1 to get 8.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}
Rationalize the denominator of \frac{\sqrt{7}+1}{\sqrt{7}-1} by multiplying numerator and denominator by \sqrt{7}+1.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}
Consider \left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{7-1}
Square \sqrt{7}. Square 1.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{6}
Subtract 1 from 7 to get 6.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}+1\right)^{2}}{6}
Multiply \sqrt{7}+1 and \sqrt{7}+1 to get \left(\sqrt{7}+1\right)^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{6}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\frac{8-2\sqrt{7}}{6}-\frac{7+2\sqrt{7}+1}{6}
The square of \sqrt{7} is 7.
\frac{8-2\sqrt{7}}{6}-\frac{8+2\sqrt{7}}{6}
Add 7 and 1 to get 8.
\frac{8-2\sqrt{7}-\left(8+2\sqrt{7}\right)}{6}
Since \frac{8-2\sqrt{7}}{6} and \frac{8+2\sqrt{7}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{8-2\sqrt{7}-8-2\sqrt{7}}{6}
Do the multiplications in 8-2\sqrt{7}-\left(8+2\sqrt{7}\right).
\frac{-4\sqrt{7}}{6}
Do the calculations in 8-2\sqrt{7}-8-2\sqrt{7}.
-\frac{2}{3}\sqrt{7}
Divide -4\sqrt{7} by 6 to get -\frac{2}{3}\sqrt{7}.