Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{\left(3-\sqrt{10}\right)\left(3+\sqrt{10}\right)}
Rationalize the denominator of \frac{\sqrt{7}}{3-\sqrt{10}} by multiplying numerator and denominator by 3+\sqrt{10}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{3^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(3-\sqrt{10}\right)\left(3+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{9-10}
Square 3. Square \sqrt{10}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{-1}
Subtract 10 from 9 to get -1.
-\sqrt{7}\left(3+\sqrt{10}\right)
Anything divided by -1 gives its opposite.
-\left(3\sqrt{7}+\sqrt{7}\sqrt{10}\right)
Use the distributive property to multiply \sqrt{7} by 3+\sqrt{10}.
-\left(3\sqrt{7}+\sqrt{70}\right)
To multiply \sqrt{7} and \sqrt{10}, multiply the numbers under the square root.
-3\sqrt{7}-\sqrt{70}
To find the opposite of 3\sqrt{7}+\sqrt{70}, find the opposite of each term.