Evaluate
-\sqrt{7}\left(\sqrt{10}+3\right)\approx -16.303854199
Share
Copied to clipboard
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{\left(3-\sqrt{10}\right)\left(3+\sqrt{10}\right)}
Rationalize the denominator of \frac{\sqrt{7}}{3-\sqrt{10}} by multiplying numerator and denominator by 3+\sqrt{10}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{3^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(3-\sqrt{10}\right)\left(3+\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{9-10}
Square 3. Square \sqrt{10}.
\frac{\sqrt{7}\left(3+\sqrt{10}\right)}{-1}
Subtract 10 from 9 to get -1.
-\sqrt{7}\left(3+\sqrt{10}\right)
Anything divided by -1 gives its opposite.
-\left(3\sqrt{7}+\sqrt{7}\sqrt{10}\right)
Use the distributive property to multiply \sqrt{7} by 3+\sqrt{10}.
-\left(3\sqrt{7}+\sqrt{70}\right)
To multiply \sqrt{7} and \sqrt{10}, multiply the numbers under the square root.
-3\sqrt{7}-\sqrt{70}
To find the opposite of 3\sqrt{7}+\sqrt{70}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}