Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{\left(3\sqrt{7}-2\right)\left(3\sqrt{7}+2\right)}
Rationalize the denominator of \frac{\sqrt{7}}{3\sqrt{7}-2} by multiplying numerator and denominator by 3\sqrt{7}+2.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{\left(3\sqrt{7}\right)^{2}-2^{2}}
Consider \left(3\sqrt{7}-2\right)\left(3\sqrt{7}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{3^{2}\left(\sqrt{7}\right)^{2}-2^{2}}
Expand \left(3\sqrt{7}\right)^{2}.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{9\left(\sqrt{7}\right)^{2}-2^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{9\times 7-2^{2}}
The square of \sqrt{7} is 7.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{63-2^{2}}
Multiply 9 and 7 to get 63.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{63-4}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{7}\left(3\sqrt{7}+2\right)}{59}
Subtract 4 from 63 to get 59.
\frac{3\left(\sqrt{7}\right)^{2}+2\sqrt{7}}{59}
Use the distributive property to multiply \sqrt{7} by 3\sqrt{7}+2.
\frac{3\times 7+2\sqrt{7}}{59}
The square of \sqrt{7} is 7.
\frac{21+2\sqrt{7}}{59}
Multiply 3 and 7 to get 21.