Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{\left(\sqrt{14}+\sqrt{7}\right)\left(\sqrt{14}-\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{14}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{14}-\sqrt{7}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{\left(\sqrt{14}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{14}+\sqrt{7}\right)\left(\sqrt{14}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{14-7}
Square \sqrt{14}. Square \sqrt{7}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{7}
Subtract 7 from 14 to get 7.
\frac{\sqrt{7}\sqrt{14}-\left(\sqrt{7}\right)^{2}}{7}
Use the distributive property to multiply \sqrt{7} by \sqrt{14}-\sqrt{7}.
\frac{\sqrt{7}\sqrt{7}\sqrt{2}-\left(\sqrt{7}\right)^{2}}{7}
Factor 14=7\times 2. Rewrite the square root of the product \sqrt{7\times 2} as the product of square roots \sqrt{7}\sqrt{2}.
\frac{7\sqrt{2}-\left(\sqrt{7}\right)^{2}}{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{7\sqrt{2}-7}{7}
The square of \sqrt{7} is 7.
\sqrt{2}-1
Divide each term of 7\sqrt{2}-7 by 7 to get \sqrt{2}-1.