Evaluate
\sqrt{2}-1\approx 0.414213562
Share
Copied to clipboard
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{\left(\sqrt{14}+\sqrt{7}\right)\left(\sqrt{14}-\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{14}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{14}-\sqrt{7}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{\left(\sqrt{14}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{14}+\sqrt{7}\right)\left(\sqrt{14}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{14-7}
Square \sqrt{14}. Square \sqrt{7}.
\frac{\sqrt{7}\left(\sqrt{14}-\sqrt{7}\right)}{7}
Subtract 7 from 14 to get 7.
\frac{\sqrt{7}\sqrt{14}-\left(\sqrt{7}\right)^{2}}{7}
Use the distributive property to multiply \sqrt{7} by \sqrt{14}-\sqrt{7}.
\frac{\sqrt{7}\sqrt{7}\sqrt{2}-\left(\sqrt{7}\right)^{2}}{7}
Factor 14=7\times 2. Rewrite the square root of the product \sqrt{7\times 2} as the product of square roots \sqrt{7}\sqrt{2}.
\frac{7\sqrt{2}-\left(\sqrt{7}\right)^{2}}{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{7\sqrt{2}-7}{7}
The square of \sqrt{7} is 7.
\sqrt{2}-1
Divide each term of 7\sqrt{2}-7 by 7 to get \sqrt{2}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}