Solve for x
x=\frac{3\sqrt{21}}{14}\approx 0.981980506
Graph
Share
Copied to clipboard
\frac{2}{3}x\times 3^{\frac{1}{2}}\sqrt{7}=3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{2}{3}\sqrt{3}\sqrt{7}x=3
Reorder the terms.
\frac{2}{3}\sqrt{21}x=3
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.
\frac{2\sqrt{21}}{3}x=3
The equation is in standard form.
\frac{3\times \frac{2\sqrt{21}}{3}x}{2\sqrt{21}}=\frac{3\times 3}{2\sqrt{21}}
Divide both sides by \frac{2}{3}\sqrt{21}.
x=\frac{3\times 3}{2\sqrt{21}}
Dividing by \frac{2}{3}\sqrt{21} undoes the multiplication by \frac{2}{3}\sqrt{21}.
x=\frac{3\sqrt{21}}{14}
Divide 3 by \frac{2}{3}\sqrt{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}