Evaluate
-3\sqrt{7}-8\approx -15.937253933
Share
Copied to clipboard
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}
Rationalize the denominator of \frac{\sqrt{7}+3}{\sqrt{7}-3} by multiplying numerator and denominator by \sqrt{7}+3.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{\left(\sqrt{7}\right)^{2}-3^{2}}
Consider \left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{7-9}
Square \sqrt{7}. Square 3.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{-2}
Subtract 9 from 7 to get -2.
\frac{\left(\sqrt{7}+3\right)^{2}}{-2}
Multiply \sqrt{7}+3 and \sqrt{7}+3 to get \left(\sqrt{7}+3\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9}{-2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+3\right)^{2}.
\frac{7+6\sqrt{7}+9}{-2}
The square of \sqrt{7} is 7.
\frac{16+6\sqrt{7}}{-2}
Add 7 and 9 to get 16.
-8-3\sqrt{7}
Divide each term of 16+6\sqrt{7} by -2 to get -8-3\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}