Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}
Rationalize the denominator of \frac{\sqrt{7}+3}{\sqrt{7}-3} by multiplying numerator and denominator by \sqrt{7}+3.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{\left(\sqrt{7}\right)^{2}-3^{2}}
Consider \left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{7-9}
Square \sqrt{7}. Square 3.
\frac{\left(\sqrt{7}+3\right)\left(\sqrt{7}+3\right)}{-2}
Subtract 9 from 7 to get -2.
\frac{\left(\sqrt{7}+3\right)^{2}}{-2}
Multiply \sqrt{7}+3 and \sqrt{7}+3 to get \left(\sqrt{7}+3\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9}{-2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+3\right)^{2}.
\frac{7+6\sqrt{7}+9}{-2}
The square of \sqrt{7} is 7.
\frac{16+6\sqrt{7}}{-2}
Add 7 and 9 to get 16.
-8-3\sqrt{7}
Divide each term of 16+6\sqrt{7} by -2 to get -8-3\sqrt{7}.