Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)^{2}
Multiply \frac{\sqrt{7}+1}{\sqrt{7}-1} and \frac{\sqrt{7}+1}{\sqrt{7}-1} to get \left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)^{2}.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{7}+1}{\sqrt{7}-1} by multiplying numerator and denominator by \sqrt{7}+1.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}\right)^{2}
Consider \left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{7-1}\right)^{2}
Square \sqrt{7}. Square 1.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{6}\right)^{2}
Subtract 1 from 7 to get 6.
\left(\frac{\left(\sqrt{7}+1\right)^{2}}{6}\right)^{2}
Multiply \sqrt{7}+1 and \sqrt{7}+1 to get \left(\sqrt{7}+1\right)^{2}.
\left(\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\left(\frac{7+2\sqrt{7}+1}{6}\right)^{2}
The square of \sqrt{7} is 7.
\left(\frac{8+2\sqrt{7}}{6}\right)^{2}
Add 7 and 1 to get 8.
\frac{\left(8+2\sqrt{7}\right)^{2}}{6^{2}}
To raise \frac{8+2\sqrt{7}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{64+32\sqrt{7}+4\left(\sqrt{7}\right)^{2}}{6^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+2\sqrt{7}\right)^{2}.
\frac{64+32\sqrt{7}+4\times 7}{6^{2}}
The square of \sqrt{7} is 7.
\frac{64+32\sqrt{7}+28}{6^{2}}
Multiply 4 and 7 to get 28.
\frac{92+32\sqrt{7}}{6^{2}}
Add 64 and 28 to get 92.
\frac{92+32\sqrt{7}}{36}
Calculate 6 to the power of 2 and get 36.