Evaluate
\frac{8\sqrt{7}+23}{9}\approx 4.907334499
Factor
\frac{8 \sqrt{7} + 23}{9} = 4.90733449872408
Share
Copied to clipboard
\left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)^{2}
Multiply \frac{\sqrt{7}+1}{\sqrt{7}-1} and \frac{\sqrt{7}+1}{\sqrt{7}-1} to get \left(\frac{\sqrt{7}+1}{\sqrt{7}-1}\right)^{2}.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\right)^{2}
Rationalize the denominator of \frac{\sqrt{7}+1}{\sqrt{7}-1} by multiplying numerator and denominator by \sqrt{7}+1.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}\right)^{2}
Consider \left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{7-1}\right)^{2}
Square \sqrt{7}. Square 1.
\left(\frac{\left(\sqrt{7}+1\right)\left(\sqrt{7}+1\right)}{6}\right)^{2}
Subtract 1 from 7 to get 6.
\left(\frac{\left(\sqrt{7}+1\right)^{2}}{6}\right)^{2}
Multiply \sqrt{7}+1 and \sqrt{7}+1 to get \left(\sqrt{7}+1\right)^{2}.
\left(\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}+1}{6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+1\right)^{2}.
\left(\frac{7+2\sqrt{7}+1}{6}\right)^{2}
The square of \sqrt{7} is 7.
\left(\frac{8+2\sqrt{7}}{6}\right)^{2}
Add 7 and 1 to get 8.
\frac{\left(8+2\sqrt{7}\right)^{2}}{6^{2}}
To raise \frac{8+2\sqrt{7}}{6} to a power, raise both numerator and denominator to the power and then divide.
\frac{64+32\sqrt{7}+4\left(\sqrt{7}\right)^{2}}{6^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(8+2\sqrt{7}\right)^{2}.
\frac{64+32\sqrt{7}+4\times 7}{6^{2}}
The square of \sqrt{7} is 7.
\frac{64+32\sqrt{7}+28}{6^{2}}
Multiply 4 and 7 to get 28.
\frac{92+32\sqrt{7}}{6^{2}}
Add 64 and 28 to get 92.
\frac{92+32\sqrt{7}}{36}
Calculate 6 to the power of 2 and get 36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}