Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Rationalize the denominator of \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Consider \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Square \sqrt{7}. Square \sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Subtract 5 from 7 to get 2.
\frac{\left(\sqrt{7}+\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Multiply \sqrt{7}+\sqrt{5} and \sqrt{7}+\sqrt{5} to get \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{7+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
The square of \sqrt{7} is 7.
\frac{7+2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{7+2\sqrt{35}+5}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
The square of \sqrt{5} is 5.
\frac{12+2\sqrt{35}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Add 7 and 5 to get 12.
6+\sqrt{35}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Divide each term of 12+2\sqrt{35} by 2 to get 6+\sqrt{35}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
Square \sqrt{7}. Square \sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}
Subtract 5 from 7 to get 2.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^{2}}{2}
Multiply \sqrt{7}-\sqrt{5} and \sqrt{7}-\sqrt{5} to get \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{7-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
The square of \sqrt{7} is 7.
6+\sqrt{35}+\frac{7-2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
6+\sqrt{35}+\frac{7-2\sqrt{35}+5}{2}
The square of \sqrt{5} is 5.
6+\sqrt{35}+\frac{12-2\sqrt{35}}{2}
Add 7 and 5 to get 12.
6+\sqrt{35}+6-\sqrt{35}
Divide each term of 12-2\sqrt{35} by 2 to get 6-\sqrt{35}.
12+\sqrt{35}-\sqrt{35}
Add 6 and 6 to get 12.
12
Combine \sqrt{35} and -\sqrt{35} to get 0.