Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\sqrt{7}+\sqrt{28}}{\sqrt{150}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
\frac{3\sqrt{7}+2\sqrt{7}}{\sqrt{150}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{5\sqrt{7}}{\sqrt{150}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Combine 3\sqrt{7} and 2\sqrt{7} to get 5\sqrt{7}.
\frac{5\sqrt{7}}{5\sqrt{6}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{\sqrt{7}}{\sqrt{6}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Cancel out 5 in both numerator and denominator.
\frac{\sqrt{7}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{7}\sqrt{6}}{6}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
The square of \sqrt{6} is 6.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{384}-\sqrt{294}}{\sqrt{112}}
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
\frac{\sqrt{42}}{6}\times \frac{8\sqrt{6}-\sqrt{294}}{\sqrt{112}}
Factor 384=8^{2}\times 6. Rewrite the square root of the product \sqrt{8^{2}\times 6} as the product of square roots \sqrt{8^{2}}\sqrt{6}. Take the square root of 8^{2}.
\frac{\sqrt{42}}{6}\times \frac{8\sqrt{6}-7\sqrt{6}}{\sqrt{112}}
Factor 294=7^{2}\times 6. Rewrite the square root of the product \sqrt{7^{2}\times 6} as the product of square roots \sqrt{7^{2}}\sqrt{6}. Take the square root of 7^{2}.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{6}}{\sqrt{112}}
Combine 8\sqrt{6} and -7\sqrt{6} to get \sqrt{6}.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{6}}{4\sqrt{7}}
Factor 112=4^{2}\times 7. Rewrite the square root of the product \sqrt{4^{2}\times 7} as the product of square roots \sqrt{4^{2}}\sqrt{7}. Take the square root of 4^{2}.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{6}\sqrt{7}}{4\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6}}{4\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{6}\sqrt{7}}{4\times 7}
The square of \sqrt{7} is 7.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{42}}{4\times 7}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{42}}{6}\times \frac{\sqrt{42}}{28}
Multiply 4 and 7 to get 28.
\frac{\sqrt{42}\sqrt{42}}{6\times 28}
Multiply \frac{\sqrt{42}}{6} times \frac{\sqrt{42}}{28} by multiplying numerator times numerator and denominator times denominator.
\frac{42}{6\times 28}
Multiply \sqrt{42} and \sqrt{42} to get 42.
\frac{42}{168}
Multiply 6 and 28 to get 168.
\frac{1}{4}
Reduce the fraction \frac{42}{168} to lowest terms by extracting and canceling out 42.