Evaluate
\frac{\sqrt{6}}{2}-1\approx 0.224744871
Share
Copied to clipboard
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{\left(6+2\sqrt{6}\right)\left(6-2\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{6}}{6+2\sqrt{6}} by multiplying numerator and denominator by 6-2\sqrt{6}.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{6^{2}-\left(2\sqrt{6}\right)^{2}}
Consider \left(6+2\sqrt{6}\right)\left(6-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{36-\left(2\sqrt{6}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{36-2^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{36-4\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{36-4\times 6}
The square of \sqrt{6} is 6.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{36-24}
Multiply 4 and 6 to get 24.
\frac{\sqrt{6}\left(6-2\sqrt{6}\right)}{12}
Subtract 24 from 36 to get 12.
\frac{6\sqrt{6}-2\left(\sqrt{6}\right)^{2}}{12}
Use the distributive property to multiply \sqrt{6} by 6-2\sqrt{6}.
\frac{6\sqrt{6}-2\times 6}{12}
The square of \sqrt{6} is 6.
\frac{6\sqrt{6}-12}{12}
Multiply -2 and 6 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}