Evaluate
\frac{-8\sqrt{3}-40\sqrt{6}}{7}\approx -15.976570882
Share
Copied to clipboard
\frac{\sqrt{6}}{5-2\times 2\sqrt{2}}-\sqrt{150}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{6}}{5-4\sqrt{2}}-\sqrt{150}
Multiply -2 and 2 to get -4.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{\left(5-4\sqrt{2}\right)\left(5+4\sqrt{2}\right)}-\sqrt{150}
Rationalize the denominator of \frac{\sqrt{6}}{5-4\sqrt{2}} by multiplying numerator and denominator by 5+4\sqrt{2}.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{5^{2}-\left(-4\sqrt{2}\right)^{2}}-\sqrt{150}
Consider \left(5-4\sqrt{2}\right)\left(5+4\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{25-\left(-4\sqrt{2}\right)^{2}}-\sqrt{150}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{25-\left(-4\right)^{2}\left(\sqrt{2}\right)^{2}}-\sqrt{150}
Expand \left(-4\sqrt{2}\right)^{2}.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{25-16\left(\sqrt{2}\right)^{2}}-\sqrt{150}
Calculate -4 to the power of 2 and get 16.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{25-16\times 2}-\sqrt{150}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{25-32}-\sqrt{150}
Multiply 16 and 2 to get 32.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{-7}-\sqrt{150}
Subtract 32 from 25 to get -7.
\frac{\sqrt{6}\left(5+4\sqrt{2}\right)}{-7}-5\sqrt{6}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{5\sqrt{6}+4\sqrt{6}\sqrt{2}}{-7}-5\sqrt{6}
Use the distributive property to multiply \sqrt{6} by 5+4\sqrt{2}.
\frac{5\sqrt{6}+4\sqrt{2}\sqrt{3}\sqrt{2}}{-7}-5\sqrt{6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{5\sqrt{6}+4\times 2\sqrt{3}}{-7}-5\sqrt{6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{5\sqrt{6}+8\sqrt{3}}{-7}-5\sqrt{6}
Multiply 4 and 2 to get 8.
\frac{-5\sqrt{6}-8\sqrt{3}}{7}-5\sqrt{6}
Multiply both numerator and denominator by -1.
\frac{-5\sqrt{6}-8\sqrt{3}}{7}+\frac{7\left(-5\right)\sqrt{6}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -5\sqrt{6} times \frac{7}{7}.
\frac{-5\sqrt{6}-8\sqrt{3}+7\left(-5\right)\sqrt{6}}{7}
Since \frac{-5\sqrt{6}-8\sqrt{3}}{7} and \frac{7\left(-5\right)\sqrt{6}}{7} have the same denominator, add them by adding their numerators.
\frac{-5\sqrt{6}-8\sqrt{3}-35\sqrt{6}}{7}
Do the multiplications in -5\sqrt{6}-8\sqrt{3}+7\left(-5\right)\sqrt{6}.
\frac{-40\sqrt{6}-8\sqrt{3}}{7}
Do the calculations in -5\sqrt{6}-8\sqrt{3}-35\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}