Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{6}}{1+2\sqrt{6}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{\left(1+2\sqrt{6}\right)\left(1-2\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{6}}{1+2\sqrt{6}} by multiplying numerator and denominator by 1-2\sqrt{6}.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1^{2}-\left(2\sqrt{6}\right)^{2}}
Consider \left(1+2\sqrt{6}\right)\left(1-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1-\left(2\sqrt{6}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1-2^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1-4\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1-4\times 6}
The square of \sqrt{6} is 6.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{1-24}
Multiply 4 and 6 to get 24.
\frac{\sqrt{6}\left(1-2\sqrt{6}\right)}{-23}
Subtract 24 from 1 to get -23.
\frac{\sqrt{6}-2\left(\sqrt{6}\right)^{2}}{-23}
Use the distributive property to multiply \sqrt{6} by 1-2\sqrt{6}.
\frac{\sqrt{6}-2\times 6}{-23}
The square of \sqrt{6} is 6.
\frac{\sqrt{6}-12}{-23}
Multiply -2 and 6 to get -12.
\frac{-\sqrt{6}+12}{23}
Multiply both numerator and denominator by -1.