Evaluate
\frac{5\sqrt{3}}{8}\approx 1.082531755
Share
Copied to clipboard
\frac{\frac{\sqrt{6}}{\sqrt{\frac{15+1}{5}}}}{\sqrt{\frac{1\times 5+3}{5}}}
Multiply 3 and 5 to get 15.
\frac{\frac{\sqrt{6}}{\sqrt{\frac{16}{5}}}}{\sqrt{\frac{1\times 5+3}{5}}}
Add 15 and 1 to get 16.
\frac{\frac{\sqrt{6}}{\frac{\sqrt{16}}{\sqrt{5}}}}{\sqrt{\frac{1\times 5+3}{5}}}
Rewrite the square root of the division \sqrt{\frac{16}{5}} as the division of square roots \frac{\sqrt{16}}{\sqrt{5}}.
\frac{\frac{\sqrt{6}}{\frac{4}{\sqrt{5}}}}{\sqrt{\frac{1\times 5+3}{5}}}
Calculate the square root of 16 and get 4.
\frac{\frac{\sqrt{6}}{\frac{4\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}}{\sqrt{\frac{1\times 5+3}{5}}}
Rationalize the denominator of \frac{4}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\sqrt{6}}{\frac{4\sqrt{5}}{5}}}{\sqrt{\frac{1\times 5+3}{5}}}
The square of \sqrt{5} is 5.
\frac{\frac{\sqrt{6}\times 5}{4\sqrt{5}}}{\sqrt{\frac{1\times 5+3}{5}}}
Divide \sqrt{6} by \frac{4\sqrt{5}}{5} by multiplying \sqrt{6} by the reciprocal of \frac{4\sqrt{5}}{5}.
\frac{\frac{\sqrt{6}\times 5\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{1\times 5+3}{5}}}
Rationalize the denominator of \frac{\sqrt{6}\times 5}{4\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{\sqrt{6}\times 5\sqrt{5}}{4\times 5}}{\sqrt{\frac{1\times 5+3}{5}}}
The square of \sqrt{5} is 5.
\frac{\frac{\sqrt{30}\times 5}{4\times 5}}{\sqrt{\frac{1\times 5+3}{5}}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{\frac{\sqrt{30}\times 5}{20}}{\sqrt{\frac{1\times 5+3}{5}}}
Multiply 4 and 5 to get 20.
\frac{\sqrt{30}\times \frac{1}{4}}{\sqrt{\frac{1\times 5+3}{5}}}
Divide \sqrt{30}\times 5 by 20 to get \sqrt{30}\times \frac{1}{4}.
\frac{\sqrt{30}\times \frac{1}{4}}{\sqrt{\frac{5+3}{5}}}
Multiply 1 and 5 to get 5.
\frac{\sqrt{30}\times \frac{1}{4}}{\sqrt{\frac{8}{5}}}
Add 5 and 3 to get 8.
\frac{\sqrt{30}\times \frac{1}{4}}{\frac{\sqrt{8}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
\frac{\sqrt{30}\times \frac{1}{4}}{\frac{2\sqrt{2}}{\sqrt{5}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{30}\times \frac{1}{4}}{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{30}\times \frac{1}{4}}{\frac{2\sqrt{2}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{30}\times \frac{1}{4}}{\frac{2\sqrt{10}}{5}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{30}\times \frac{1}{4}\times 5}{2\sqrt{10}}
Divide \sqrt{30}\times \frac{1}{4} by \frac{2\sqrt{10}}{5} by multiplying \sqrt{30}\times \frac{1}{4} by the reciprocal of \frac{2\sqrt{10}}{5}.
\frac{\sqrt{30}\times \frac{5}{4}}{2\sqrt{10}}
Multiply \frac{1}{4} and 5 to get \frac{5}{4}.
\frac{\sqrt{30}\times \frac{5}{4}\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{30}\times \frac{5}{4}}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{30}\times \frac{5}{4}\sqrt{10}}{2\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{10}\sqrt{3}\times \frac{5}{4}\sqrt{10}}{2\times 10}
Factor 30=10\times 3. Rewrite the square root of the product \sqrt{10\times 3} as the product of square roots \sqrt{10}\sqrt{3}.
\frac{10\times \frac{5}{4}\sqrt{3}}{2\times 10}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{10\times \frac{5}{4}\sqrt{3}}{20}
Multiply 2 and 10 to get 20.
\frac{\frac{10\times 5}{4}\sqrt{3}}{20}
Express 10\times \frac{5}{4} as a single fraction.
\frac{\frac{50}{4}\sqrt{3}}{20}
Multiply 10 and 5 to get 50.
\frac{\frac{25}{2}\sqrt{3}}{20}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{8}\sqrt{3}
Divide \frac{25}{2}\sqrt{3} by 20 to get \frac{5}{8}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}