Solve for t
t = \frac{2 \sqrt{3} + 3 \sqrt{2}}{6} \approx 1.28445705
Share
Copied to clipboard
\frac{\sqrt{6}}{\sqrt{6}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{6}t} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{6}\sqrt{6}}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
The square of \sqrt{6} is 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Square \sqrt{2}. Square \sqrt{3}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Subtract 3 from 2 to get -1.
\frac{6}{6t}=-\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)
Anything divided by -1 gives its opposite.
\frac{6}{6t}=-\left(\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Use the distributive property to multiply \sqrt{6} by \sqrt{2}-\sqrt{3}.
\frac{6}{6t}=-\left(\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6}{6t}=-\left(2\sqrt{3}-3\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6}{6t}=-2\sqrt{3}+3\sqrt{2}
To find the opposite of 2\sqrt{3}-3\sqrt{2}, find the opposite of each term.
6=-2\sqrt{3}\times 6t+3\sqrt{2}\times 6t
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6t.
6=3\times 6\sqrt{2}t-2\times 6\sqrt{3}t
Reorder the terms.
6=18\sqrt{2}t-12\sqrt{3}t
Do the multiplications.
18\sqrt{2}t-12\sqrt{3}t=6
Swap sides so that all variable terms are on the left hand side.
\left(18\sqrt{2}-12\sqrt{3}\right)t=6
Combine all terms containing t.
\frac{\left(18\sqrt{2}-12\sqrt{3}\right)t}{18\sqrt{2}-12\sqrt{3}}=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Divide both sides by 18\sqrt{2}-12\sqrt{3}.
t=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Dividing by 18\sqrt{2}-12\sqrt{3} undoes the multiplication by 18\sqrt{2}-12\sqrt{3}.
t=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}
Divide 6 by 18\sqrt{2}-12\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}