Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6}+3\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{6}+3\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply \sqrt{6}+3\sqrt{3} by \sqrt{3}.
\frac{\sqrt{3}\sqrt{2}\sqrt{3}+3\left(\sqrt{3}\right)^{2}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}+3\left(\sqrt{3}\right)^{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{2}+3\times 3}{3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{2}+9}{3}
Multiply 3 and 3 to get 9.
\sqrt{2}+3
Divide each term of 3\sqrt{2}+9 by 3 to get \sqrt{2}+3.