Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}
Rationalize the denominator of \frac{\sqrt{6}+1}{\sqrt{6}-2} by multiplying numerator and denominator by \sqrt{6}+2.
\frac{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}
Consider \left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}{6-4}
Square \sqrt{6}. Square 2.
\frac{\left(\sqrt{6}+1\right)\left(\sqrt{6}+2\right)}{2}
Subtract 4 from 6 to get 2.
\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}+\sqrt{6}+2}{2}
Apply the distributive property by multiplying each term of \sqrt{6}+1 by each term of \sqrt{6}+2.
\frac{6+2\sqrt{6}+\sqrt{6}+2}{2}
The square of \sqrt{6} is 6.
\frac{6+3\sqrt{6}+2}{2}
Combine 2\sqrt{6} and \sqrt{6} to get 3\sqrt{6}.
\frac{8+3\sqrt{6}}{2}
Add 6 and 2 to get 8.