Evaluate
\frac{59\sqrt{29}+5-\sqrt{295}-\sqrt{8555}}{54}\approx 3.945479937
Share
Copied to clipboard
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{59\times 29}+\sqrt{5\times 29}}
Multiply 5 and 29 to get 145.
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{5\times 29}}
Multiply 59 and 29 to get 1711.
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{145}}
Multiply 5 and 29 to get 145.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{\left(\sqrt{1711}+\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}
Rationalize the denominator of \frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{145}} by multiplying numerator and denominator by \sqrt{1711}-\sqrt{145}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{\left(\sqrt{1711}\right)^{2}-\left(\sqrt{145}\right)^{2}}
Consider \left(\sqrt{1711}+\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{1711-145}
Square \sqrt{1711}. Square \sqrt{145}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{1566}
Subtract 145 from 1711 to get 1566.
\frac{29\sqrt{59}\sqrt{1711}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Apply the distributive property by multiplying each term of 29\sqrt{59}-\sqrt{145} by each term of \sqrt{1711}-\sqrt{145}.
\frac{29\sqrt{59}\sqrt{59}\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Factor 1711=59\times 29. Rewrite the square root of the product \sqrt{59\times 29} as the product of square roots \sqrt{59}\sqrt{29}.
\frac{29\times 59\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Multiply \sqrt{59} and \sqrt{59} to get 59.
\frac{1711\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Multiply 29 and 59 to get 1711.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
To multiply \sqrt{59} and \sqrt{145}, multiply the numbers under the square root.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{248095}+\left(\sqrt{145}\right)^{2}}{1566}
To multiply \sqrt{145} and \sqrt{1711}, multiply the numbers under the square root.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{248095}+145}{1566}
The square of \sqrt{145} is 145.
\frac{1711\sqrt{29}-29\sqrt{8555}-29\sqrt{295}+145}{1566}
Factor 248095=29^{2}\times 295. Rewrite the square root of the product \sqrt{29^{2}\times 295} as the product of square roots \sqrt{29^{2}}\sqrt{295}. Take the square root of 29^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}