\frac { \sqrt { 56 ^ { 2 } - 46 ^ { 2 } } } { 0,25 \cdot \sqrt { 10 } }
Evaluate
4\sqrt{102}\approx 40.398019753
Share
Copied to clipboard
\frac{\sqrt{3136-46^{2}}}{0,25\sqrt{10}}
Calculate 56 to the power of 2 and get 3136.
\frac{\sqrt{3136-2116}}{0,25\sqrt{10}}
Calculate 46 to the power of 2 and get 2116.
\frac{\sqrt{1020}}{0,25\sqrt{10}}
Subtract 2116 from 3136 to get 1020.
\frac{2\sqrt{255}}{0,25\sqrt{10}}
Factor 1020=2^{2}\times 255. Rewrite the square root of the product \sqrt{2^{2}\times 255} as the product of square roots \sqrt{2^{2}}\sqrt{255}. Take the square root of 2^{2}.
\frac{2\sqrt{255}\sqrt{10}}{0,25\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{255}}{0,25\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{2\sqrt{255}\sqrt{10}}{0,25\times 10}
The square of \sqrt{10} is 10.
\frac{2\sqrt{2550}}{0,25\times 10}
To multiply \sqrt{255} and \sqrt{10}, multiply the numbers under the square root.
\frac{2\sqrt{2550}}{2,5}
Multiply 0,25 and 10 to get 2,5.
\frac{2\times 5\sqrt{102}}{2,5}
Factor 2550=5^{2}\times 102. Rewrite the square root of the product \sqrt{5^{2}\times 102} as the product of square roots \sqrt{5^{2}}\sqrt{102}. Take the square root of 5^{2}.
\frac{10\sqrt{102}}{2,5}
Multiply 2 and 5 to get 10.
4\sqrt{102}
Divide 10\sqrt{102} by 2,5 to get 4\sqrt{102}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}