Evaluate
\frac{\sqrt{15}}{3}\approx 1.290994449
Share
Copied to clipboard
\frac{\left(\sqrt{5}-6\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{12}
Rationalize the denominator of \frac{\sqrt{5}-6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{5}-6\right)\sqrt{3}}{3}+\sqrt{12}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{5}-6\right)\sqrt{3}}{3}+2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(\sqrt{5}-6\right)\sqrt{3}}{3}+\frac{3\times 2\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3} times \frac{3}{3}.
\frac{\left(\sqrt{5}-6\right)\sqrt{3}+3\times 2\sqrt{3}}{3}
Since \frac{\left(\sqrt{5}-6\right)\sqrt{3}}{3} and \frac{3\times 2\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
\frac{\sqrt{15}-6\sqrt{3}+6\sqrt{3}}{3}
Do the multiplications in \left(\sqrt{5}-6\right)\sqrt{3}+3\times 2\sqrt{3}.
\frac{\sqrt{15}}{3}
Do the calculations in \sqrt{15}-6\sqrt{3}+6\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}