Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-3\right)\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{5}-3}{2-\sqrt{2}} by multiplying numerator and denominator by 2+\sqrt{2}.
\frac{\left(\sqrt{5}-3\right)\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-3\right)\left(2+\sqrt{2}\right)}{4-2}
Square 2. Square \sqrt{2}.
\frac{\left(\sqrt{5}-3\right)\left(2+\sqrt{2}\right)}{2}
Subtract 2 from 4 to get 2.
\frac{2\sqrt{5}+\sqrt{5}\sqrt{2}-6-3\sqrt{2}}{2}
Apply the distributive property by multiplying each term of \sqrt{5}-3 by each term of 2+\sqrt{2}.
\frac{2\sqrt{5}+\sqrt{10}-6-3\sqrt{2}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.