Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\sqrt{3}-\sqrt{3}}{\sqrt{3}+\sqrt{3}\sqrt{5}-\sqrt{3}}
Combine \sqrt{5} and -\sqrt{5} to get 0.
\frac{-2\sqrt{3}}{\sqrt{3}+\sqrt{3}\sqrt{5}-\sqrt{3}}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
\frac{-2\sqrt{3}}{\sqrt{3}+\sqrt{15}-\sqrt{3}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-2\sqrt{3}}{\sqrt{15}}
Combine \sqrt{3} and -\sqrt{3} to get 0.
\frac{-2\sqrt{3}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{-2\sqrt{3}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{-2\sqrt{3}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{-2\sqrt{3}\sqrt{3}\sqrt{5}}{15}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{-2\times 3\sqrt{5}}{15}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{-6\sqrt{5}}{15}
Multiply -2 and 3 to get -6.
-\frac{2}{5}\sqrt{5}
Divide -6\sqrt{5} by 15 to get -\frac{2}{5}\sqrt{5}.