Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}-1}\times 1
Divide \sqrt{5}+\sqrt{3} by \sqrt{5}+\sqrt{3} to get 1.
\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\times 1
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}\times 1
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{2-1}\times 1
Square \sqrt{2}. Square 1.
\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{2}+1\right)}{1}\times 1
Subtract 1 from 2 to get 1.
\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{2}+1\right)\times 1
Anything divided by one gives itself.
\left(\sqrt{5}\sqrt{2}+\sqrt{5}-\sqrt{3}\sqrt{2}-\sqrt{3}\right)\times 1
Apply the distributive property by multiplying each term of \sqrt{5}-\sqrt{3} by each term of \sqrt{2}+1.
\left(\sqrt{10}+\sqrt{5}-\sqrt{3}\sqrt{2}-\sqrt{3}\right)\times 1
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(\sqrt{10}+\sqrt{5}-\sqrt{6}-\sqrt{3}\right)\times 1
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{10}+\sqrt{5}-\sqrt{6}-\sqrt{3}
Use the distributive property to multiply \sqrt{10}+\sqrt{5}-\sqrt{6}-\sqrt{3} by 1.