Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}}{7-2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{\left(7-2\sqrt{5}\right)\left(7+2\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}}{7-2\sqrt{5}} by multiplying numerator and denominator by 7+2\sqrt{5}.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{7^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(7-2\sqrt{5}\right)\left(7+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{49-\left(-2\sqrt{5}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{49-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{49-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{49-4\times 5}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{49-20}
Multiply 4 and 5 to get 20.
\frac{\sqrt{5}\left(7+2\sqrt{5}\right)}{29}
Subtract 20 from 49 to get 29.
\frac{7\sqrt{5}+2\left(\sqrt{5}\right)^{2}}{29}
Use the distributive property to multiply \sqrt{5} by 7+2\sqrt{5}.
\frac{7\sqrt{5}+2\times 5}{29}
The square of \sqrt{5} is 5.
\frac{7\sqrt{5}+10}{29}
Multiply 2 and 5 to get 10.