Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\left(6-\sqrt{5}\right)}{\left(6+\sqrt{5}\right)\left(6-\sqrt{5}\right)}
Rationalize the denominator of \frac{\sqrt{5}}{6+\sqrt{5}} by multiplying numerator and denominator by 6-\sqrt{5}.
\frac{\sqrt{5}\left(6-\sqrt{5}\right)}{6^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(6+\sqrt{5}\right)\left(6-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(6-\sqrt{5}\right)}{36-5}
Square 6. Square \sqrt{5}.
\frac{\sqrt{5}\left(6-\sqrt{5}\right)}{31}
Subtract 5 from 36 to get 31.
\frac{6\sqrt{5}-\left(\sqrt{5}\right)^{2}}{31}
Use the distributive property to multiply \sqrt{5} by 6-\sqrt{5}.
\frac{6\sqrt{5}-5}{31}
The square of \sqrt{5} is 5.