Skip to main content
Solve for σ_c
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}=\frac{\sigma _{c}}{1\times 10^{5}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}\sqrt{5}}{2\times 5}=\frac{\sigma _{c}}{1\times 10^{5}}
The square of \sqrt{5} is 5.
\frac{5}{2\times 5}=\frac{\sigma _{c}}{1\times 10^{5}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5}{10}=\frac{\sigma _{c}}{1\times 10^{5}}
Multiply 2 and 5 to get 10.
\frac{1}{2}=\frac{\sigma _{c}}{1\times 10^{5}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}=\frac{\sigma _{c}}{1\times 100000}
Calculate 10 to the power of 5 and get 100000.
\frac{1}{2}=\frac{\sigma _{c}}{100000}
Multiply 1 and 100000 to get 100000.
\frac{\sigma _{c}}{100000}=\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
\sigma _{c}=\frac{1}{2}\times 100000
Multiply both sides by 100000.
\sigma _{c}=\frac{100000}{2}
Multiply \frac{1}{2} and 100000 to get \frac{100000}{2}.
\sigma _{c}=50000
Divide 100000 by 2 to get 50000.