Solve for σ_c
\sigma _{c}=50000
Share
Copied to clipboard
\frac{\sqrt{5}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}=\frac{\sigma _{c}}{1\times 10^{5}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}\sqrt{5}}{2\times 5}=\frac{\sigma _{c}}{1\times 10^{5}}
The square of \sqrt{5} is 5.
\frac{5}{2\times 5}=\frac{\sigma _{c}}{1\times 10^{5}}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5}{10}=\frac{\sigma _{c}}{1\times 10^{5}}
Multiply 2 and 5 to get 10.
\frac{1}{2}=\frac{\sigma _{c}}{1\times 10^{5}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}=\frac{\sigma _{c}}{1\times 100000}
Calculate 10 to the power of 5 and get 100000.
\frac{1}{2}=\frac{\sigma _{c}}{100000}
Multiply 1 and 100000 to get 100000.
\frac{\sigma _{c}}{100000}=\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
\sigma _{c}=\frac{1}{2}\times 100000
Multiply both sides by 100000.
\sigma _{c}=\frac{100000}{2}
Multiply \frac{1}{2} and 100000 to get \frac{100000}{2}.
\sigma _{c}=50000
Divide 100000 by 2 to get 50000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}